

GASBOOSTER SERIES

Pumster Air driven gas boosters are suitable for explosion proof area.

Pumster air driven gas boosters work on the principle of Pascal's law by the difference of compression ratio.

HOW IT WORKS

Pneumatic operation by applying Pascal's Law

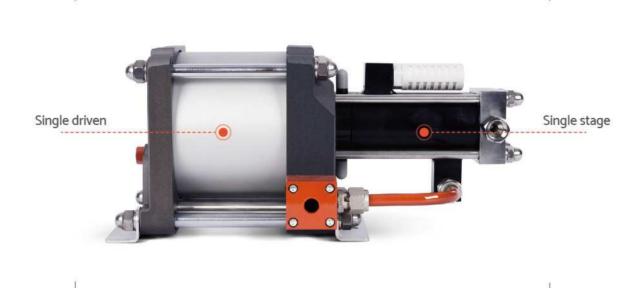
Based on Pascal's law, air driven GAS BOOSTER is increasing the pressure by the compression ratio. Air pressure makes the plunger to reciprocate. With repeated reciprocating of the plunger, it discharges and increases the gas to out-check after compressing the gas through in-check.

Features of Gas Booster

Applied in industrial gas and special gas such as Argon, Helium, Nitrogen, Oxygen etc.,

Stay cool when working hard due to a cooling jacket

No requirement for electricity


Oil free, no requirement for oil replacement, contamination

Suitable for explosion proof area

Available as a complete packaged system

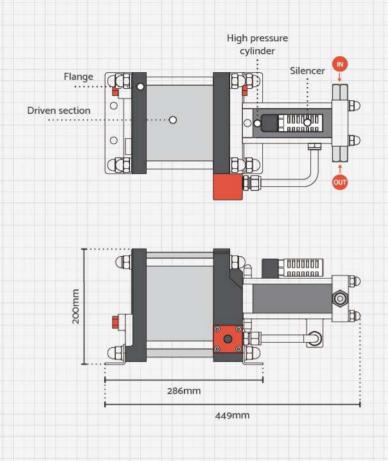
GB-SS SERIES

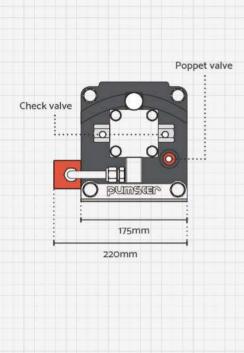
Single stage & Single driven

Gas Booster GB-SS is consists of single stage and single driven part.

There are 5 types depending on compression ratio.

(compression ratio: 1:7 / 14 / 30 / 50 / 75)





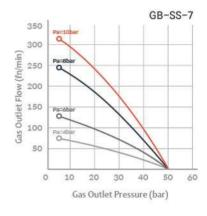
GB-SS

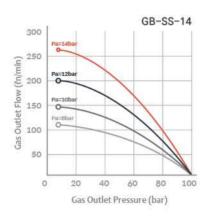
SIZE / PART NAME

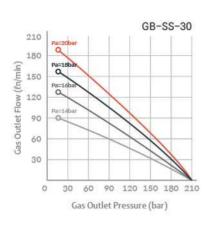
※ Please contact sales staff if you need further assistance.

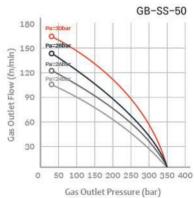
GB-SS

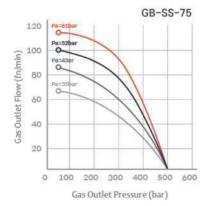
SPECIFICATION


** Actual weight could be slightly different.
** M.P(kg/on) = Ratio * Air Drive Pressure(kg/on)


Model F	Ratio	Air Drive Pressure(kg/㎝)	Max. Min.Suction		Connections		Flow rate	Weight
Model	Ratio		Pressure(kg/cm²)	Pressure(kg/cm)	Inlet	Outlet	(ℓn /min)	(kg)
SS-7	1:7		49	4		1/2" PT	555	16
SS-14	1:14		98	7	1/2" PT		600	16
SS-30	1:30	5~10	210	14	9/16" 18UNF		564	17
SS-50	1:50		350	21			494	18
SS-75	1:75		525	35			370	18




GB-SS


PERFORMANCE CURVES

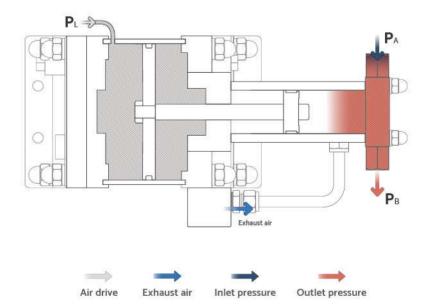
Theoretical charging time formula

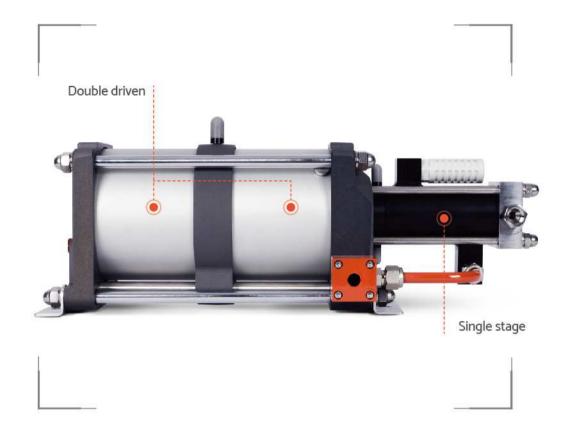
Reservoir tank x atm = TAL TAL /(Flow rate/sec) = total charging time

* Outlet pressure (Pb) = I-PI (Outlet Pressure = Compression ratio · Air drive)

Precautions

- There are lots of variables when increasing pressure under high pressure
- · Driven part: driven air pressure, flow rate
- · High pressure part: inflow gas pressure, feed rate
- · Actual flow rate will be different depending on utility.


GB-SS


OVERVIEW

PL - Air drive

P_A - Suction gas

PB - Discharging gas

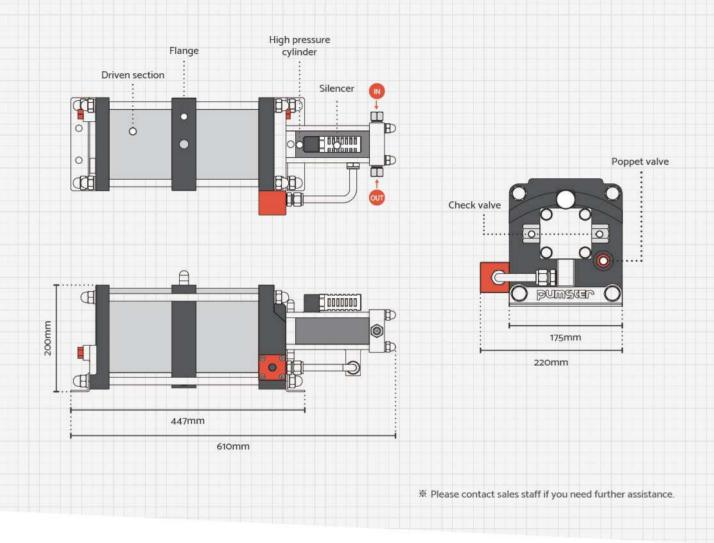
GB-SD SERIES

Single stage & Double driven

Gas Booster GB-SD is consists of single stage and double driven part.

There are **3 types depending on compression ratio**.

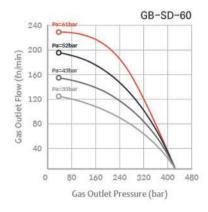
(compression ratio: 1:60 / 100 / 150)

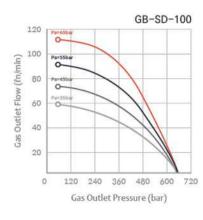


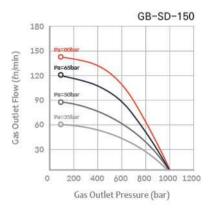
GB-SD

SIZE / PART NAME

SPECIFICATION


Actual weight could be slightly different.


M.P(kg/qii) = Ratio * Air Drive Pressure(kg/qii)
 M.P is calculated with 7 bar(standardized air pressure).


Model Rat		Air Drive Pressure(kg/㎝)	Max. Pressure(kg/㎝)	Min.Suction	Conne	ections	Flow rate	Weight
	Ratio			Pressure(kg/cm²)	Inlet	Outlet	(ln /min)	(kg)
SD-60	1:60	5~10	420	28	9/16" 18UNF	9/16" 18 UNF	635	20
SD-100	1:100		700	31			370	20
SD-150	1:150		1,050	35			530	21

GB-SD

PERFORMANCE CURVES

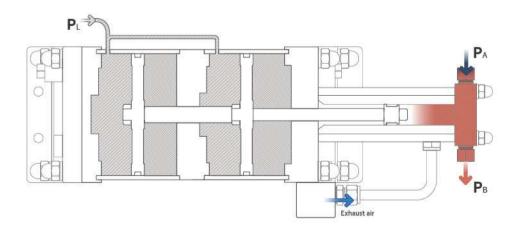
Theoretical charging time formula

Reservoir tank x atm = TAL TAL /(Flow rate/sec) = total charging time

* Outlet pressure (Pb) = I-PI (Outlet Pressure = Compression ratio · Air drive)

Precautions

- There are lots of variables when increasing pressure under high pressure
- · Driven part: driven air pressure, flow rate
- · High pressure part: inflow gas pressure, feed rate
- · Actual flow rate will be different depending on utility.

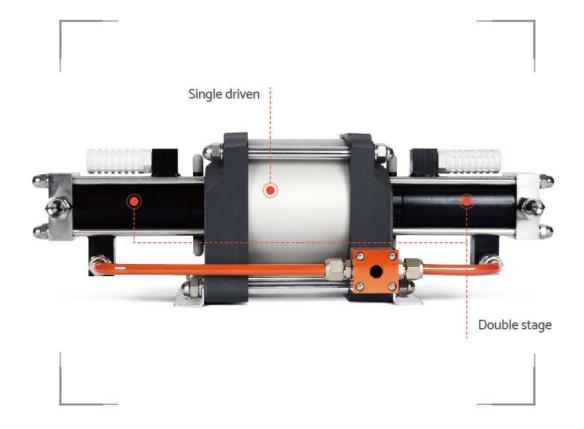

GB-SD

OVERVIEW

P_L - Air drive

Pa - Suction gas

P_B - Discharging gas



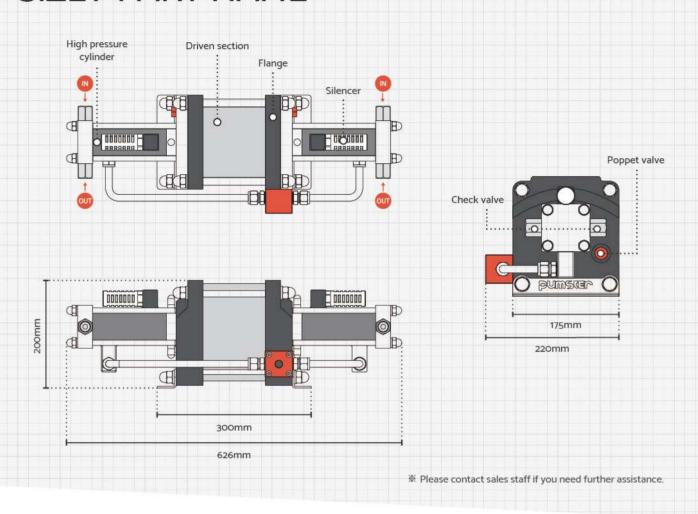
GB-DS SERIES

Double stage & Single driven

Gas Booster GB-DS is consists of double stage and single driven part.

There are 5 types depending on compression ratio.

(compression ratio: 1:7 / 14 / 30 / 50 / 75)

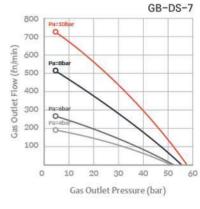


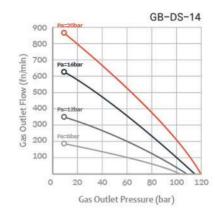
Gas Boosters |

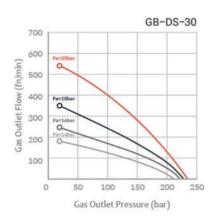
GB-DS

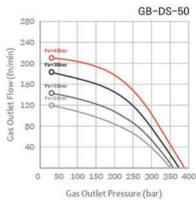
SIZE / PART NAME

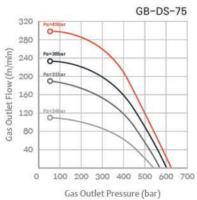
GB-DS


SPECIFICATION


* Actual weight could be slightly different.


Model Rati		Air Drive	Max. Min.Suction Pressure(kg/of) Pressure(kg/of)	Min.Suction	Conne	ections	Flow rate	Weight (kg) 19 19 20
	Ratio	Pressure(kg/cm²)		Pressure(kg/gg)	Inlet	Outlet	(ln /min)	
DS-7	1:7	5~10	49	4	1/2" PT	1/2" PT	3,180	
DS-14	1:14		98	7			4,230	
DS-30	1:30		210	14	9/16" 18UNF	9/16" 18 UNF	2,470	20
DS-50	1:50		350	21			1,130	21
DS-75	1:75		525	35			1,300	21


GB-DS


PERFORMANCE CURVES

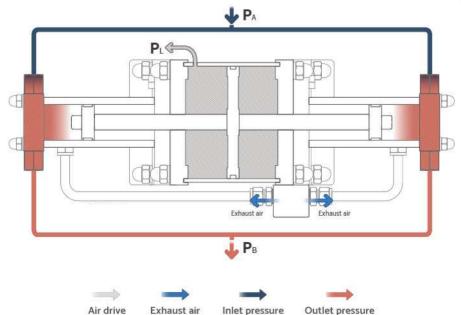
Theoretical charging time formula

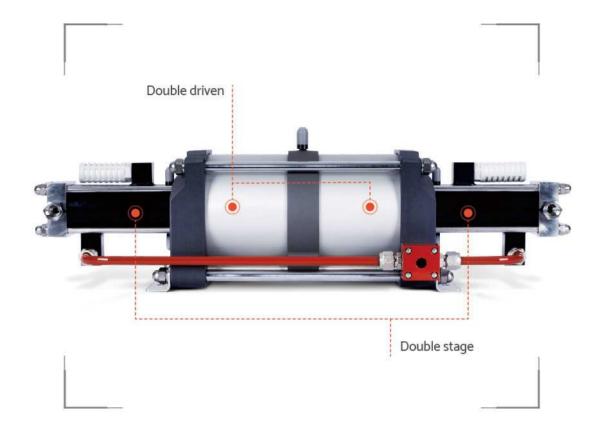
Reservoir tank x atm = TAL TAL /(Flow rate/sec) = total charging time

* Outlet pressure (Pb) = I-PI (Outlet Pressure = Compression ratio - Air drive)

Precautions

- There are lots of variables when increasing pressure under high pressure
- · Driven part: driven air pressure, flow rate
- · High pressure part: inflow gas pressure, feed rate
- · Actual flow rate will be different depending on utility.


GB-DS


OVERVIEW

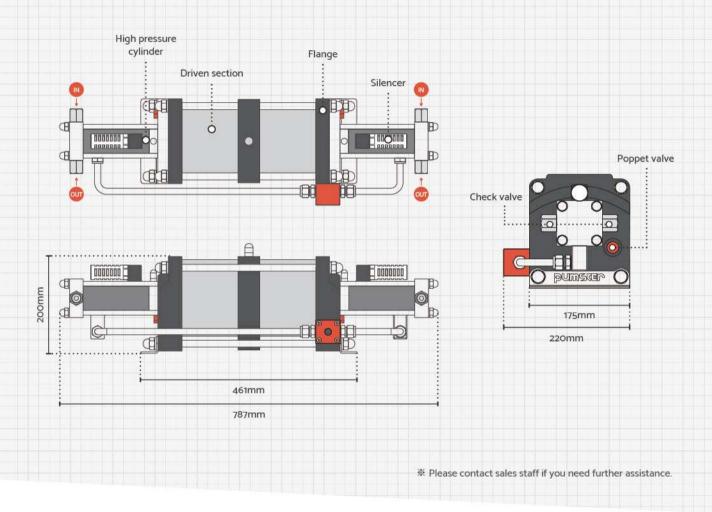
P_L - Air drive

P_A - Suction gas

P_B - Discharging gas

GB-DD SERIES

Double stage & Double driven

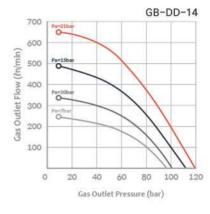

Gas Booster GB-DD is consists of double stage and double driven part. There are 5 types depending on compression ratio. (compression ratio: 1:14/28/60/100/150)

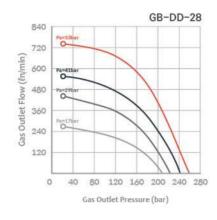
Gas Boosters | - 15

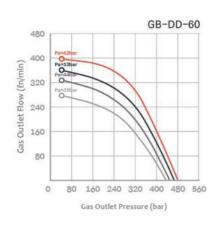
GB-DD

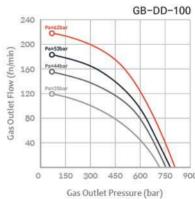
SIZE / PART NAME

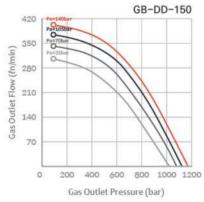
GB-DD


SPECIFICATION


* Actual weight could be slightly different.


Model	Ratio	Air Drive Pressure(kg/ੴ)	Max.	Min.Suction	Conne	ections	Flow rate	Weight (kg)
			Pressure(kg/cm²)	Pressure(kg/cm²)	Inlet	Outlet	(ln /min)	
DD-14	1:14	5~10	98	7	1/2" PT	1/2" PT	6,000	23
DD-28	1:28		196	13			2,790	23
DD-60	1:60		420	28	9/16" 18UNF	9/16" 18 UNF	2,050	24
DD-100	1:100		700	31			1,130	25
DD-150	1:150		1,050	35			1,410	25


GB-DD


PERFORMANCE CURVES

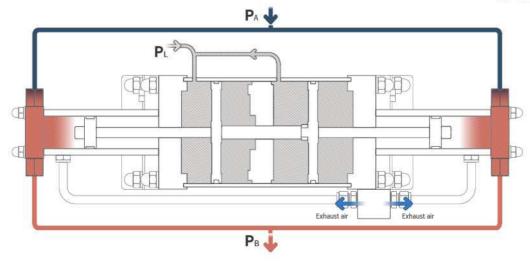
Theoretical charging time formula

Reservoir tank x atm = TAL TAL /(Flow rate/sec) = total charging time

* Outlet pressure (Pb) = I-PI (Outlet Pressure = Compression ratio · Air drive)

Precautions

- There are lots of variables when increasing pressure under high pressure
- Driven part driven air pressure, flow rate
- · High pressure part: inflow gas pressure, feed rate
- · Actual flow rate will be different depending on utility.

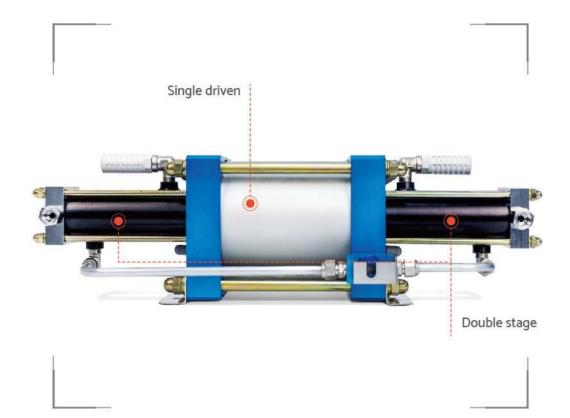

GB-DD

OVERVIEW

PL - Air drive

P_A - Suction gas

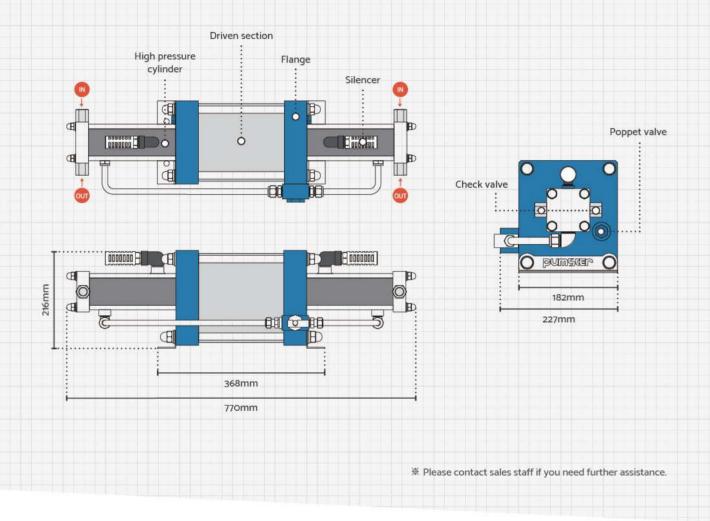
PB - Discharging gas



GB-DS-7 SERIES

Double stage & Single driven

Gas Booster GB-DS(160ϕ) is a special model. It is consists of double stage and single driven part. (compression ratio: 1:7 [Driven part 160ϕ])



Gas Boosters |

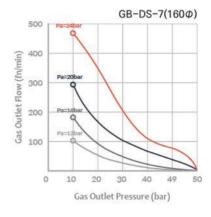
GB-DS-7(160Φ)

SIZE / PART NAME

GB-DS-7(160Φ)

SPECIFICATION

	75.00	. Air Drive	Max. Min.Suction	Min.Suction	Connections		Flow rate	Weight
Model	Ratio	Pressure(kg/am²)	Pressure(kg/cm²)	Pressure(kg/gg²)	Inlet	Outlet	(ln /min)	(kg)
GB-DS-7 (160Φ)	1:7	5~10	49	4	1/2" PT	1/2" PT	3,820	21


^{*} Actual weight could be slightly different.

[★] M.P(kg/cm) = Ratio * Air Drive Pressure(kg/cm)

M.P is calculated with 7 bar(standardized air pressure).

GB-DS-7(160Φ)

PERFORMANCE CURVES

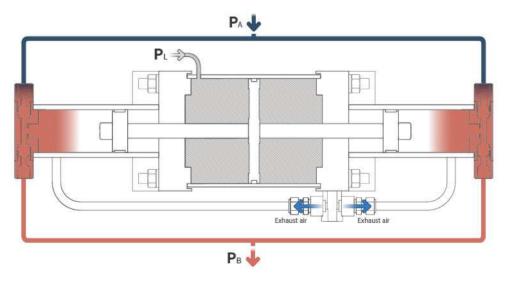
Theoretical charging time formula

Reservoir tank x atm = TAL TAL /(Flow rate/sec) = total charging time

* Outlet pressure (Pb) = I-PI (Outlet Pressure = Compression ratio · Air drive)

Precautions

- There are lots of variables when increasing pressure under high pressure
- · Driven part: driven air pressure, flow rate
- · High pressure part: inflow gas pressure, feed rate
- · Actual flow rate will be different depending on utility.

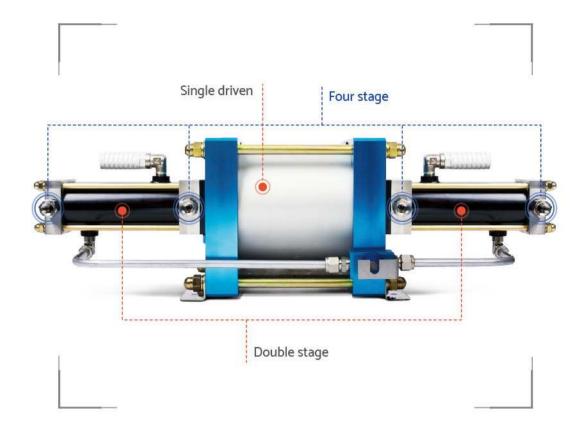

GB-DS-7(160Φ)

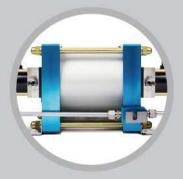
OVERVIEW

PL - Air drive

PA - Suction gas

P_B - Discharging gas

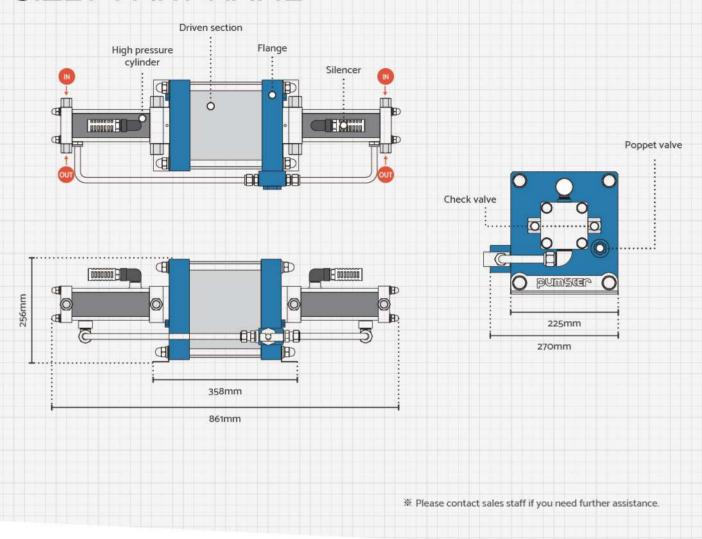



GB-QS-7 SERIES

Four stage & Single driven

Gas Booster GB-QS(200ϕ) is a special model. It is consists of double stage(four displacement flow part) and single driven part.

(compression ratio: 1:7 [Driven part 200ϕ])



GB-QS-7(200Φ)

SIZE / PART NAME

GB-QS-7(200Φ)

SPECIFICATION

Model Datie	Desire	Air Drive	Max.	Min Suction	Conne	ctions	Flow rate	Weight
	Pressure(kg/cm²)	Pressure(kg/cm²) Pressure(kg/cm²)	Pressure(kg/cm²)	Inlet	Outlet	(ln /min)	(kg)	
GB-QS-7 (200Φ)	1:7	5~10	49	4	1/2" PT	1/2" PT	4,200	40

^{*} Actual weight could be slightly different.

M.P is calculated with 7 bar(standardized air pressure).